4.6 Article

Joint Computing Resource, Power, and Channel Allocations for D2D-Assisted and NOMA-Based Mobile Edge Computing

Journal

IEEE ACCESS
Volume 7, Issue -, Pages 9243-9257

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/ACCESS.2018.2890559

Keywords

Mobile edge computing (MEC); non-orthogonal multiple access (NOMA); device-to-device (D2D) communications; power allocation; channel allocation

Funding

  1. National Natural Science Foundation of China [61801505]
  2. Jiangsu Provincial Nature Science Foundation of China [BK20170755]
  3. National Postdoctoral Program for Innovative Talents of China [BX201700109]

Ask authors/readers for more resources

Mobile edge computing (MEC) and non-orthogonal multiple access (NOMA) have been considered as the promising techniques to address the explosively growing computation-intensive applications and accomplish the requirement of massive connectivity in the fifth-generation networks. Moreover, since the computing resources of the edge server are limited, the computing load of the edge server needs to be effectively alleviated. In this paper, by exploiting device-to-device (D2D) communication for enabling user collaboration and reducing the edge server's load, we investigate the D2D-assisted and NOMA-based MEC system. In order to minimize the weighted sum of the energy consumption and delay of all users, we jointly optimize the computing resource, power, and channel allocations. Regarding the computing resource allocation, we propose an adaptive algorithm to find the optimal solution. Regarding the power allocation, we present a novel power allocation algorithm based on the particle swarm optimization (PSO) for the single NOMA group comprised of multiple cellular users. Then, for the matching group comprised of a NOMA group and D2D pairs, we theoretically derive the interval of optimal power allocation and propose a PSO-based algorithm to solve it. Regarding the channel allocation, we propose a one-to-one matching algorithm based on the Pareto improvement and swapping operations and extend the one-to-one matching algorithm to a many-to-one matching scenario. Finally, we propose a scheduling-based joint computing resource, power, and channel allocations algorithm to achieve the joint optimization. The simulation results show that the proposed solution can effectively reduce the weighted sum of the energy consumption and delay of all users.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available