4.7 Article

A nanocomposite prepared from a zinc-based metal-organic framework and polyethersulfone as a novel coating for the headspace solid-phase microextraction of organophosphorous pesticides

Journal

MICROCHIMICA ACTA
Volume 185, Issue 1, Pages -

Publisher

SPRINGER WIEN
DOI: 10.1007/s00604-017-2607-3

Keywords

Sample preparation; Gas chromatography; Nitrogen-phosphorus detector; Water; Soil; Central composite design

Funding

  1. Iran Nanotechnology Initiative Council
  2. Tarbiat Modares University

Ask authors/readers for more resources

The authors describe a zinc-based metal-organic framework/polyethersulfone nanocomposite (TMU-4/PES) coating deposited on a stainless steel wire via a single-phase inversion method. The nanocomposite represents a novel fiber coating for headspace solid-phase microextraction of organophosphorous pesticides (OPPs) from environmental water and soil samples. The synergistic effects of the high surface area and unique porous structure of TMU-4 as well as the rich pi electron stacking and mechanical attributes of the PES polymer result in a high affinity of the composite for OPPs. Following thermal desorption, the OPPS were quantified by gas chromatography with a nitrogen-phosphorus detector. The preparation of the coating is simple, and the coated fiber is highly stable and reusable in that it can be used in about 100 consecutive extractions/desorption cycles. A central composite design was used for assessing the effect of the experimental parameters on the extraction process. Under optimized conditions, the limits of detection are in the 5-8 ng mL(-1) range for the OPPs diazinon, fenitrothion, malathion and chlorpyrifos. The average repeatability and fiber-to-fiber reproducibility are 6.5% and 8.7%, respectively. The method was applied to the trace determination of OPPs in (spiked) water and soil samples where it gave good recovery (88-108%) and satisfactory reproducibility (5.9-10.1%).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available