4.0 Article

Effects of Nrf2 deficiency on mitochondrial oxidative stress in aged skeletal muscle

Journal

PHYSIOLOGICAL REPORTS
Volume 7, Issue 3, Pages -

Publisher

WILEY
DOI: 10.14814/phy2.13998

Keywords

Aging; mitochondria; oxidative stress; skeletal muscle

Categories

Funding

  1. Japan Society for the Promotion of Science (JSPS) [26750304, 18K17941]
  2. Yokohama Academic Foundation
  3. Grants-in-Aid for Scientific Research [26750304, 18K17941] Funding Source: KAKEN

Ask authors/readers for more resources

Oxidative stress and mitochondrial dysfunction are associated with the aging process. However, the role of nuclear factor erythroid 2 -related factor 2 (Nrf2) in skeletal muscle during aging remains to be clarified. In the current study, we assessed whether the lack of Nrf2, which is known as a master regulator of redox homeostasis, promotes age-related mitochondrial dysfunction and muscle atrophy in skeletal muscle. Here, we demonstrated that mitochondrial 4-hydroxynonenal and protein carbonyls, markers of oxidative stress, were robustly elevated in aged Nrf2 knockout (KO) mice because of the decreased expression of Nrf2-target antioxidant genes. Mitochondrial respiration declined with aging; however, there was no difference between Nrf2 KO and age-matched WT mice. Similarly, cytochrome c oxidase activity was lower in aged WT and Nrf2 KO mice compared with young WT mice. The expression of Mfn1 and Mfn2 mRNA was lower in aged Nrf2 KO muscle. Mitochondrial reactive oxygen species production per oxygen consumed was elevated in aged Nrf2 KO mice. There was no effect of Nrf2 KO on muscle mass normalized to body weight. These results suggest that Nrf2 deficiency exacerbates age-related mitochondrial oxidative stress but does not affect the decline of respiratory function in skeletal muscle.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.0
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available