4.7 Article

New insights into the degradation processes and influence of the conservation treatment in alum-treated wood from the Oseberg collection

Journal

MICROCHEMICAL JOURNAL
Volume 132, Issue -, Pages 119-129

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.microc.2017.01.010

Keywords

Alum; Archaeological wood; Degradation; Potassium bisulphate; Sulphuric acid; Oseberg

Funding

  1. JPI - JHEP Joint Pilot Transnational Call for Joint Research Projects on Cultural Heritage
  2. Saving Oseberg project
  3. Norwegian Ministry of Education and University of Oslo

Ask authors/readers for more resources

The Oseberg collection includes the most complete ensemble of wooden remains from the Viking Age. However, since many of the wooden objects were treated with alum in the early 1900s, they now suffer from dramatic conservation issues. A multi-analytical approach was adopted to investigate both the organic and the inorganic components of some selected wood fragments, with the aim of fully characterising the materials and their decomposition products. A particular focus was taken on the differences between the surface and the core of the fragments analysed, and on the correlations between the results obtained by the different techniques, in order to disclose possible interactions between the materials during degradation. In addition to differences in alum concentration and wood alteration between the surface and the core, some decomposition/transformation products of alum, such as mercallite (KHSO4), were identified by FTIR and XRD. Contextual interpretation of the results obtained by ICP-OES elemental analysis of inorganic components and Py(HMDS)-GC/MS characterisation of degraded lignocellulosic materials supported some previous observations about potential relationships between specific metals (Al, Fe, Ca) and wood degradation and enabled new correlations to be highlighted. Although similar degradation patterns were revealed in the investigated objects-depletion of holocellulose, oxidation of lignin and some transformation of alum - a notable variability at the molecular level was highlighted. This is an important factor to be taken into account for the planning of re-treatment strategies of these extremely precious artefacts. (C) 2017 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available