4.7 Article

Effect of glucose on poly-γ-glutamic acid metabolism in Bacillus licheniformis

Journal

MICROBIAL CELL FACTORIES
Volume 16, Issue -, Pages -

Publisher

BIOMED CENTRAL LTD
DOI: 10.1186/s12934-017-0642-8

Keywords

Glucose; gamma-PGA; Polysaccharide; Carbon control protein; B.licheniformis

Funding

  1. National Key Research and Development Plan [2016YFD0400205]
  2. National Natural Science Foundation of China [51378444, 21676221]
  3. University of Science and Technology in Fujian Province [2015H6004]
  4. Xiamen Southern Oceanographic Center [15GYY024NF03]

Ask authors/readers for more resources

Background: Poly-gamma-glutamic acid (gamma-PGA) is a promising macromolecule with potential as a replacement for chemosynthetic polymers.gamma-PGA can be produced by many microorganisms, including Bacillus species. Bacillus licheniformis CGMCC2876 secretes gamma-PGA when using glycerol and trisodium citrate as its optimal carbon sources and secretes polysaccharides when using glucose as the sole carbon source. To better understand the metabolic mechanism underlying the secretion of polymeric substances, SWATH was applied to investigate the effect of glucose on the production of polysaccharides and gamma-PGA at the proteome level. Results: The addition of glucose at 5 or 10 g/L of glucose decreased the gamma-PGA concentration by 31.54 or 61.62%, respectively, whereas the polysaccharide concentration increased from 5.2 to 43.47%. Several proteins playing related roles in gamma-PGA and polysaccharide synthesis were identified using the SWATH acquisition LC-MS/MS method. CcpA and CcpN co-enhanced glycolysis and suppressed carbon flux into the TCA cycle, consequently slowing glutamic acid synthesis. On the other hand, CcpN cut off the carbon flux from glycerol metabolism and further reduced gamma-PGA production. CcpA activated a series of operons ( glm and epsA-O) to reallocate the carbon flux to polysaccharide synthesis when glucose was present. The production of gamma-PGA was influenced by NrgB, which converted the major nitrogen metabolic flux between NH4+ and glutamate. Conclusion: The mechanism by which B. licheniformis regulates two macromolecules was proposed for the first time in this paper. This genetic information will facilitate the engineering of bacteria for practicable strategies for the fermentation of gamma-PGA and polysaccharides for diverse applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available