3.9 Review

Tapping into Synchrotron and Benchtop Circular Dichroism Spectroscopy for Expanding Studies of Complex Polysaccharides and their Interactions in Anoxic Archaeological Wood

Journal

HERITAGE
Volume 2, Issue 1, Pages 121-134

Publisher

MDPI
DOI: 10.3390/heritage2010009

Keywords

Circular dichroism spectroscopy; archaeological wood preservation; complex polysaccharides; cellulose; lignin; consolidant interactions

Funding

  1. Norwegian Ministry of Education and Research
  2. University of Oslo

Ask authors/readers for more resources

Circular dichroism (CD) (and synchrotron circular dichroism (SCD)) spectroscopy is a rapid, highly sensitive technique used to investigate structural conformational changes in biomolecules in response to interactions with ligands in solution and in film. It is a chiroptical method and at least one of the interacting molecules must possess optical activity (or chirality). In this review, we compare the capabilities of CD and SCD in the characterisation of celluloses and lignin polymers in archaeological wood. Cellulose produces a range of spectral characteristics dependent on environment and form; many of the reported transitions occur in the vacuum-ultraviolet region (< 180 nm) most conveniently delivered using a synchrotron source. The use of induced CD in which achiral dyes are bound to celluloses to give shifted spectra in the visible region is also discussed, together with its employment to identify the handedness of the chiral twists in nanocrystalline cellulose. Lignin is one target for the design of future consolidants that interact with archaeological wood to preserve it. It is reportedly achiral, but here we review several studies in which CD spectroscopy has successfully revealed lignin interactions with chiral enzymes, highlighting the potential usefulness of the technique in future research to identify new generation consolidants.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.9
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available