4.6 Article

Effect of Beam Oscillation on Microstructure and Mechanical Properties of AISI 316L Electron Beam Welds

Publisher

SPRINGER
DOI: 10.1007/s11661-017-3976-2

Keywords

-

Funding

  1. Board of Research for Nuclear Science, Department of Atomic Energy, Government of India

Ask authors/readers for more resources

The properties of electron beam-welded AISI 316L stainless steel butt joints prepared with and without beam oscillation were evaluated by microstructural analysis, mechanical testing like microhardness measurements, tensile tests at room and elevated temperature 973 K (700 A degrees C), three-point bend, and Charpy impact tests. All joints, irrespective of being prepared with or without beam oscillation, were found to be defect free. Welds produced by beam oscillation exhibited narrower fusion zone (FZ) with lathy ferrite morphology, while the weld without beam oscillation was characterized by wider FZ and skeletal ferrite morphology. During tensile tests at room and elevated temperature 973 K (700 A degrees C), all samples fractured in the base metal (BM) and showed almost the same tensile properties as that of the BM. However, the notch tensile tests at room temperature demonstrated higher strength for joints prepared with the oscillating beam. Besides, face and root bend tests, as well as Charpy impact tests, showed higher bending strength and notch toughness, respectively, for joints prepared with beam oscillation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available