4.6 Article

The Influence of Al Content and Thickness on the Microstructure and Tensile Properties in High-Pressure Die Cast Magnesium Alloys

Publisher

SPRINGER
DOI: 10.1007/s11661-017-3958-4

Keywords

-

Funding

  1. Department of Energy Office of Vehicle Technologies under the Automotive Lightweighting Materials Program
  2. U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering as part of the Center for PRedictive Integrated Structural Materials Science (PRISMS Center) at University of Michigan [DE-SC0008637]

Ask authors/readers for more resources

The influence of Al content and section thickness on the microstructural features and tensile properties of high-pressure die cast AM series magnesium alloys is quantified in order to better understand the relationship between microstructure and tensile properties. It is found that with increasing aluminum content, the yield strength increases and the ductility decreases. Increasing the plate thickness results in a decrease in both the yield strength and ductility. The grain size, beta-Mg17Al12 phase volume fraction, and solute content are all quantified through the thickness of the plates. It is found that the plates have a skin with increased hardness, due to a fine grain structure. The primary factors affecting strengthening in these alloys, including microstructural variations through the thickness, are accounted for using a linear superposition model. We conclude that yield strength is dominated by grain boundary strengthening and solid solution strengthening effects. The through-thickness grain size and solute concentration were quantified and these variations were found to play an important role in controlling the yield strength of these alloys.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available