4.7 Article

Remineralization rate of terrestrial DOC as inferred from CO2 supersaturated coastal waters

Journal

BIOGEOSCIENCES
Volume 16, Issue 3, Pages 863-879

Publisher

COPERNICUS GESELLSCHAFT MBH
DOI: 10.5194/bg-16-863-2019

Keywords

-

Funding

  1. Baltic Ecosystem Adaptive Management (BEAM), a strategic research program at Stockholm University, Sweden
  2. Swedish Agency of Environment (Naturvardsverket)
  3. Swedish Agency for Marine and Water Management [1 : 11]
  4. BONUS COCOA project - European Union [2112932-1]
  5. BONUS COCOA project - Academy of Finland [2112932-1]
  6. Strategic Research Council at the Academy of Finland, project SmartSea [292985]

Ask authors/readers for more resources

Coastal seas receive large amounts of terrestrially derived organic carbon (OC). The fate of this carbon, and its impact on the marine environment, is however poorly understood. Here we combine underway CO2 partial pressure (pCO(2)) measurements with coupled 3-D hydrodynamical-biogeochemical modelling to investigate whether remineralization of terrestrial dissolved organic carbon (tDOC) can explain CO2 supersaturated surface waters in the Gulf of Bothnia, a subarctic estuary. We find that a substantial remineralization of tDOC and a strong tDOC-induced light attenuation dampening the primary production are required to reproduce the observed CO2 supersaturated waters in the nearshore areas. A removal rate of tDOC of the order of 1 year, estimated in a previous modelling study in the same area, gives a good agreement between modelled and observed pCO(2). The remineralization rate is on the same order as bacterial degradation rates calculated from published incubation experiments, suggesting that bacteria has the potential to cause this degradation. Furthermore, the observed high pCO(2) values during the ice-covered season argue against photochemical degradation as the main removal mechanism. All of the remineralized tDOC is outgassed to the atmosphere in the model, turning the northernmost part of the Gulf of Bothnia into a source of CO2 to the atmosphere.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available