4.8 Article

Vertically aligned MoS2 nanosheets on graphene for highly stable electrocatalytic hydrogen evolution reactions

Journal

NANOSCALE
Volume 11, Issue 5, Pages 2439-2446

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c8nr10092f

Keywords

-

Funding

  1. Department of Science and Technology (DST), Govt. of India [SR/NM/NS-1502/2014]
  2. Ministry of Human Resource Development under Rashtriya Uchchatar Shiksha Abhiyan (RUSA)
  3. Alexander von Humboldt (AvH) Foundation
  4. DRDO
  5. DST-INSPIRE, Govt. of India [170198]

Ask authors/readers for more resources

Conducting an efficient hydrogen evolution reaction (HER) using two-dimensional molybdenum disulphide as electrocatalysts remains a challenging task due to the insufficient active edge sites. In this regard, herein, molybdenum disulphide nanosheets with rich active sulphur sites were vertically grown on the graphene surface via a chemical vapour deposition process. The direct integration of vertically aligned MoS2 nanosheets on graphene forms a van der Waals (vdW) heterojunction, which facilitates a barrier-free charge transport towards the electrolyte as a result of unique and well-matched energy band alignment at the interface. The prospective combination of Ohmic graphene/MoS2 heterostructure and the high electrocatalytic edge activity of sulphur delivers an incredibly and small turn-on potential of 0.14 V vs. RHE in the acid electrolyte solution. Most importantly, the use of a vertical vdW device architecture exhibits nearly 8x improvement in HER than that of its layered counterpart. Moreover, the HER reaction is highly stable over 50 hours of continuous operation even after 150 days. The combined analysis of our study makes it certain that the graphene/MoS2 heterostructure will be an efficient alternative electrode for low-cost and large-scale electrochemical applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available