4.6 Article

Graphene-hBN non-van der Waals vertical heterostructures for four- electron oxygen reduction reaction

Journal

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Volume 21, Issue 7, Pages 3942-3953

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c8cp06155f

Keywords

-

Funding

  1. Tata Institute of Fundamental Research - Hyderabad, India
  2. DST-SERB, India [EMR/2017/000513]

Ask authors/readers for more resources

A novel vertical non-van der Waals (non-vdW) heterostructure of graphene and hexagonal boron nitride (G/hBN) is realized and its application in direct four-electron oxygen reduction reaction (ORR) in alkaline medium is established. The G/hBN differs from previously demonstrated vdW heterostructures, where it has a chemical bridging between graphene and hBN allowing a direct charge transfer - resulting in high ORR activity. The ORR efficacy of G/hBN is compared with that of graphene-hBN vdW structure and individual layers of graphene and hBN along with that of benchmark platinum/carbon (Pt/C). The ORR activity of G/hBN is found to be on par with Pt/C in terms of current density but with much higher electrochemical stability and methanol tolerance. The onset potential of the G/hBN is found to be improved from 780 mV at a glassy carbon electrode to 930 mV and 940 mV in gold and platinum electrodes, respectively, indicating its substrate-dependent catalytic activity. This opens possibilities of new benchmark catalysts of metals capped with G/hBN atomic layers, where the underneath metal is protected while keeping the activity similar to that of pristine metal. Density functional theory-based calculations are found to be supporting the observed augmented ORR performance of G/hBN.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available