4.6 Article

Gas-phase synthetic pathways to benzene and benzonitrile: a combined microwave and thermochemical investigation

Journal

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Volume 21, Issue 6, Pages 2946-2956

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c8cp06070c

Keywords

-

Funding

  1. NSF [AST-1615847]
  2. NASA through Hubble Fellowship - Space Telescope Science Institute [HST-HF2-51396]
  3. NASA [NAS5-6555]

Ask authors/readers for more resources

The recent astronomical detection of benzonitrile (C6H5CN) in the cold, starless cloud TMC-1 demonstrates that aromatic chemistry is efficient even in the primordial stages of star and planet formation. C6H5CN may serve as a convenient observational proxy for benzene, which is otherwise challenging to detect in space, provided the chemistry linking these two molecules is tightly constrained. Here we present a high-resolution microwave spectroscopic study in combination with an accurate thermochemical treatment of the formation chemistry of C6H5CN and benzene. We demonstrate that C6H5CN is a highly useful tracer for benzene in the presence of CN radical, either in space or in the laboratory, and by inference, that the reaction C2H + CH2(CH)(2)CH2 yields benzene, along with its high-energy polar isomer fulvene. In addition, we find that the higher energy isomer, C6H5NC, is formed at <0.1% abundance relative to C6H5CN. By exploiting -CN tagging, formation pathways to produce benzene using a variety of acyclic hydrocarbon precursors are then explored. A robust, self-consistent, and chemically accurate theoretical treatment has also been undertaken for several key reactions. The results are discussed both in the context of aromatic molecule synthesis and astrochemistry.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available