4.5 Article

Electrospun Polycaprolactone Fibrous Membranes Containing Ag, TiO2 and Na2Ti6O13 Particles for Potential Use in Bone Regeneration

Journal

MEMBRANES
Volume 9, Issue 1, Pages -

Publisher

MDPI
DOI: 10.3390/membranes9010012

Keywords

electrospinning; antibacterial; cell proliferation; bioactivity; polycaprolactone; titanium dioxide; silver; sodium hexatitanate

Funding

  1. Tecnologico de Monterrey through the Research Groups in Nanotechnology and Advanced Manufacturing

Ask authors/readers for more resources

Biocompatible and biodegradable membrane treatments for regeneration of bone are nowadays a promising solution in the medical field. Bioresorbable polymers are extensively used in membrane elaboration, where polycaprolactone (PCL) is used as base polymer. The goal of this work was to improve electrospun membranes' biocompatibility and antibacterial properties by adding micro- and nanoparticles such as Ag, TiO2 and Na2Ti6O13. Micro/nanofiber morphologies of the obtained membranes were characterized by X-ray diffraction, Fourier-transform infrared spectroscopy, differential scanning calorimetry, scanning electron microscopy, energy-dispersive X-ray spectroscopy and a tensile test. Also, for this study optical microscopy was used to observe DAPI-stained cells. Membranes of the different systems were electrospun to an average diameter of 1.02-1.76 mu m. To evaluate the biological properties, cell viability was studied by growing NIH/3T3 cells on the microfibers. PCL/TiO2 strength was enhanced from 0.6 MPa to 6.3 MPa in comparison with PCL without particles. Antibacterial activity was observed in PCL/TiO2 and PCL/Na2Ti6O13 electrospun membranes using Staphylococcus aureus bacteria. Bioactivity of the membranes was confirmed with simulated body fluid (SBF) treatment. From this study, the ceramic particles TiO2 and Na2Ti6O13, combined with a PCL matrix with micro/nanoparticles, enhanced cell proliferation, adhesion and antibacterial properties. The electrospun composite with Na2Ti6O13 can be considered viable for tissue regenerative processes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available