4.6 Article

Insights into a layered hybrid solid electrolyte and its application in long lifespan high-voltage all-solid-state lithium batteries

Journal

JOURNAL OF MATERIALS CHEMISTRY A
Volume 7, Issue 8, Pages 3882-3894

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c8ta11259b

Keywords

-

Funding

  1. Bundesministerium fur Bildung und Forschung (BMBF) [03XP0084C]
  2. Max Planck Society

Ask authors/readers for more resources

Direct integration of a metallic lithium anode with the ceramic Li1.3Al0.3Ti1.7(PO4)(3) (LATP) electrolyte into an all-solid-state battery is highly challenging due to their chemical and electrochemical incompatibility. Herein, a layered hybrid solid electrolyte is designed by coating the ceramic LATP electrolyte with a protective polymer electrolyte, polyphosphazene/PVDF-HFP/LiBOB. This polymer electrolyte comprises highly Li+ conductive polyphosphazene and mechanically stable PVDF-HFP as the polymer matrix, and the mobile lithium ions in the polymer layer are supplied by LiBOB. Equipped with both polymer and ceramic components, the hybrid electrolyte possesses favorable features, such as a flexible surface, high ionic conductivity, high chemical stability against lithium and wide electrochemical stability window (4.7 V), which all to help realize its application in all-solid-state lithium batteries. The prepared all-solid-state battery with a metallic lithium anode and high-voltage Li3V2(PO4)(3)/CNT cathode shows high capacity and excellent cycling performance with negligible capacity loss over 500 cycles at 50 degrees C. Furthermore, the analysis of the hybrid solid electrolyte after long-term cycling demonstrates outstanding electrode/electrolyte interfacial stability. This study suggests that use of solid organic-inorganic hybrid electrolyte is a promising approach to circumvent the mechanical, chemical and electrochemical limitations at the interface of electrodes and ceramic electrolyte for all-solid-state batteries.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available