4.7 Article

Direct stimulation of somatosensory cortex results in slower reaction times compared to peripheral touch in humans

Journal

SCIENTIFIC REPORTS
Volume 9, Issue -, Pages -

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41598-019-38619-2

Keywords

-

Funding

  1. National Science Foundation (NSF) Center for Neurotechnology (CNT) [EEC-1028725]
  2. NSF [IIS-1514790]
  3. NSF Graduate Research Fellowship Program [DGE-1256082]
  4. Big Data for Genomics & Neuroscience Training Grant [1T32CA206089-01A1]
  5. Washington Research Foundation Funds for Innovation in Neuroengineering
  6. National Institute of Mental Health [5K0I NS065186-035]

Ask authors/readers for more resources

Direct cortical stimulation (DCS) of primary somatosensory cortex (S1) could help restore sensation and provide task-relevant feedback in a neuroprosthesis. However, the psychophysics of S1 DCS is poorly studied, including any comparison to cutaneous haptic stimulation. We compare the response times to DCS of human hand somatosensory cortex through electrocorticographic grids with response times to haptic stimuli delivered to the hand in four subjects. We found that subjects respond significantly slower to S1 DCS than to natural, haptic stimuli for a range of DCS train durations. Median response times for haptic stimulation varied from 198 ms to 313 ms, while median responses to reliably perceived DCS ranged from 254 ms for one subject, all the way to 528 ms for another. We discern no significant impact of learning or habituation through the analysis of blocked trials, and find no significant impact of cortical stimulation train duration on response times. Our results provide a realistic set of expectations for latencies with somatosensory DCS feedback for future neuroprosthetic applications and motivate the study of neural mechanisms underlying human perception of somatosensation via DCS.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available