4.7 Article

The Mass Evolution of Protostellar Disks and Envelopes in the Perseus Molecular Cloud

Journal

ASTROPHYSICAL JOURNAL
Volume 873, Issue 1, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.3847/1538-4357/ab05c7

Keywords

circumstellar matter; protoplanetary disks; stars: formation

Funding

  1. National Science Foundation REU [AST-1659473]
  2. Department of Defense ASSURE programs under NSF Grant [AST-1659473]
  3. Smithsonian Institution
  4. Netherlands Research School for Astronomy (NOVA)
  5. Royal Netherlands Academy of Arts and Sciences (KNAW) professor prize
  6. European Union A-ERC grant [291141 CHEMPLAN]
  7. Academia Sinica
  8. Canada Foundation for Innovation
  9. CANARIE
  10. Compute Canada
  11. University of Victoria
  12. National Research Council of Canada
  13. Canadian Space Agency

Ask authors/readers for more resources

In the standard picture for low-mass star formation, a dense molecular cloud undergoes gravitational collapse to form a protostellar system consisting of a new central star, a circumstellar disk, and a surrounding envelope of remaining material. The mass distribution of the system evolves as matter accretes from the large-scale envelope through the disk and onto the protostar. While this general picture is supported by simulations and indirect observational measurements, the specific timescales related to disk growth and envelope dissipation remain poorly constrained. In this paper we conduct a rigorous test of a method introduced by Jorgensen et al. to obtain mass measurements of disks and envelopes around embedded protostars with observations that do not resolve the disk (resolution of similar to 1000 au). Using unresolved data from the recent Mass Assembly of Stellar Systems and their Evolution with the SMA (MASSES) survey, we derive disk and envelope mass estimates for 59 protostellar systems in the Perseus molecular cloud. We compare our results to independent disk mass measurements from the VLA Nascent Disk and Multiplicity survey and find a strong linear correlation, suggesting that accurate disk masses can be measured from unresolved observations. Then, leveraging the size of the MASSES sample, we find no significant trend in protostellar mass distribution as a function of age, as approximated from bolometric temperatures. These results may indicate that the disk mass of a protostar is set near the onset of the Class 0 protostellar stage and remains roughly constant throughout the Class I protostellar stage.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available