4.8 Article

Effect of wire and arc additive manufacturing (WAAM) process parameters on bead geometry and microstructure

Journal

ADDITIVE MANUFACTURING
Volume 26, Issue -, Pages 138-146

Publisher

ELSEVIER
DOI: 10.1016/j.addma.2018.12.013

Keywords

Wire arc additive manufacturing; Bead geometry; Metal additive manufacturing; Additive manufacturing process parameters

Funding

  1. Natural Sciences and Engineering Research Council (NSERC)

Ask authors/readers for more resources

This paper discusses the effects of process parameters in TIG based WAAM for specimens created using Hastelloy X alloy (Haynes International) welding wire and 304 stainless-steel plate as the substrate. The Taguchi method and ANOVA were used to determine the effects of travel speed, wire feed rate, current, and argon flow rate on the responses including bead shape and size, bead roughness, oxidation levels, melt through depth, and the microstructure. Travel speed and current were found to have the largest effect on the responses. Increasing travel speed or decreasing current caused a decrease in melt through depth and an increase in roughness. Printing strategies were tested using specimens of multiple layers and no significant difference was found between printing layers in the same direction and printing layers in alternating directions. No observable interface between the layers was present suggesting a complete fusion between layers with no oxidation. Three distinct zones were identified within the three- and eight-layer samples. The zones were characterized by the size and distribution of the molybdenum carbide formations within the matrix grain formations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available