4.2 Article

Europium Hydroxide Nanorods (EHNs) Ameliorate Isoproterenol-Induced Myocardial Infarction: An in Vitro and in Vivo Investigation

Journal

ACS APPLIED BIO MATERIALS
Volume 2, Issue 3, Pages 1078-1087

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsabm.8b00669

Keywords

isoproterenol; myocardial ischemia; europium hydroxide nanorods; electrocardiography; cardiac hypertrophy

Funding

  1. CSIR-Mayo Clinic Collaboration for Innovation and Translational Research [CKM/CMPP-09, MLP0020]
  2. DST-Nanomission [SR/NM/NS-1252/2013, GAP 570]
  3. DST, New Delhi

Ask authors/readers for more resources

Cardiovascular diseases (CVDs) are one of the leading causes of global morbidity and mortality. Among these, the ischemic heart disease (IHD) or coronary artery disease (CAD) accounts for the major deaths due to CVDs. Several approaches followed to treat the ischemic heart diseases are limited due to various adverse effects and cost of treatment. Recently, nanotechnology has revolutionized the field of biomedical research by introducing various technologies to improve the health care, using a nanomedicine approach. In this context, our group has well-established the europium hydroxide nanorods (EHNs), which promote the formation of new blood vessels (angiogenesis) through reactive oxygen species (ROS) and nitric oxide (NO)-mediated signaling pathways. Further, these pro-angiogenic nanorods were also reported to exhibit a mild to nontoxic nature toward mammalian cells and mouse models. Henceforth, in the present study, myocardial ischemia (MI) was created in Wistar rats using isoproterenol (ISO), a well-established model for investigating MI. For the first time, the effect of the pro-angiogenic nanorods (EHNs) on the ischemic condition was validated using several assays, which revealed that the ischemia and cardiotoxicity induced by ISO were ameliorated by EHNs in both H9C2 rat cardiomyocytes (in vitro) and Wistar rats (in vivo). Considering the above results, we believe that EHN could be developed as alternative treatment strategies for myocardial ischemia therapy and other ischemic diseases where angiogenesis plays a significant role, in the near future.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available