4.7 Article

Effect of particle size oscillations on drift and diffusion along a periodically corrugated channel

Journal

PHYSICAL REVIEW E
Volume 99, Issue 3, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.99.032102

Keywords

-

Ask authors/readers for more resources

We study diffusive transport of a particle in a channel with periodically varying cross-section, occurring when the size of the particle periodically switches between two values. In such a situation, the entropy potential, which accounts for the area accessible for diffusion particle, varies both spatially (along the channel axis) and temporally. This underlies the complex interplay between different timescales of the system and leads to novel dynamic regimes. The most notable observations are: emergence of directed motion (in case of asymmetric channel) and resonant diffusion, both controlled by the switching frequency. Resonantlike behaviors of the drift velocity and the effective diffusion coefficient are shown and discussed. Based on heuristic arguments, an approximate analytical treatment of the transport process is proposed. As a comparison with the results obtained from Brownian dynamics simulations indicates, this approach provides a satisfactory way to handle the problem analytically.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available