4.4 Article

Biomechanical evaluation of a novel pedicle screw-based interspinous spacer: A finite element analysis

Journal

MEDICAL ENGINEERING & PHYSICS
Volume 46, Issue -, Pages 27-32

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.medengphy.2017.05.004

Keywords

Interspinous spacer; Finite element method; Spine biomechanics; Implant design

Funding

  1. National Science Council of Taiwan
  2. Taiwan, Food and Drug Administration
  3. NSC [103-2321-B-010-030, 103-2320-B-010-004-MY3, 102TFDA-JFDA-203]

Ask authors/readers for more resources

Interspinous spacers have been designed to provide a minimally invasive surgical technique for patients with lumbar spinal stenosis or foraminal stenosis. A novel pedicle screw-based interspinous spacer has been developed in this study, and the aim of this finite element experiment was to investigate the biomechanical differences between the pedicle screw-based interspinous spacer (M-rod system) and the typical interspinous spacer (Coflex-F (TM)). A validated finite element model of an intact lumbar spine was used to analyze the insertions of the Coflex-F (TM), titanium alloy M-rod (M-Ti), and polyetheretherketone M-rod (M-PEEK), independently. The range of motion (ROM) between each vertebrae, stiffness of the implanted level, the peak stress at the intervertebral discs, and the contact forces on spinous process were analyzed. Of all three devices, the Coflex-F (TM) provided the largest restrictions in extension, flexion and lateral bending. For intervertebral disc, the peak stress at the implanted segment decreased by 81% in the Coflex-F (TM), 60.2% in the M-Ti and 46.7% in the M-PEEK when compared to the intact model. For the adjacent segments, while the Coflex-F (TM) caused considerable increases in the ROM and disc stress, the M-PEEK only had small changes. (C) 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available