4.5 Article

Biodiesel production from waste cooking oil using heterogeneous catalysts and its operational characteristics on variable compression ratio CI engine

Journal

JOURNAL OF THE ENERGY INSTITUTE
Volume 92, Issue 2, Pages 275-287

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.joei.2018.01.008

Keywords

Biodiesel; Heterogeneous catalyst; Waste cooking oil; Variable compression ratio; Zinc doped calcium oxide

Categories

Ask authors/readers for more resources

In the present work, the optimum biodiesel conversion from waste cooking oil to biodiesel through transesterification method was investigated. The base catalyzed transesterification under different reactant proportions such as the molar ratio of alcohol to oil and mass ratio of catalyst to oil was studied for optimum production of biodiesel. The optimum condition for base catalyzed transesterification of waste cooking oil was determined to be 12:1 and 5 wt% of zinc doped calcium oxide. The fuel properties of the produced biodiesel such as the calorific value, flash point and density were examined and compared to conventional diesel. The properties of produced biodiesel and their blend for different ratios (B20, B40, B60, B80 and B100) were comparable with properties of diesel oil and ASTM biodiesel standards. Tests have been conducted on CI engine which runs at a constant speed of 1500 rpm, injection pressure of 200 bar, compression ratio 15:1 and 17.5, and varying engine load. The performance parameters include brake thermal efficiency, brake specific energy consumption and emissions parameters such as Carbon monoxide (CO), Hydrocarbon (HC), Oxides of Nitrogen (NOx) and smoke opacity varying with engine load (BP). Diesel engine's thermal performance and emission parameters such as CO, HC, and NOx on different biodiesel blends demonstrate that biodiesel produced from waste cooking oil using heterogeneous catalyst was suitable to be used as diesel oil blends and had lesser emissions as compared to conventional diesel. (C) 2018 Energy Institute. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available