4.7 Article

Low salinity enhances NI-mediated oxidative stress and sub-lethal toxicity to the green shore crab (Carcinus maenas)

Journal

ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY
Volume 122, Issue -, Pages 159-170

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ecoenv.2015.07.019

Keywords

Oxidative stress; Invertebrate; Salinity; Metal; Catalase; Osmoregulation

Funding

  1. NSERC
  2. Nickel Producers Environmental Research Association, Inc.
  3. International Zinc Association
  4. International Lead Zinc Research Organisation
  5. International Copper Association
  6. Copper Development Association
  7. Teck Resources
  8. Vale Inco
  9. Canada Research Chairs Programme

Ask authors/readers for more resources

Nickel (Ni) is a metal of environmental concern, known to cause toxicity to freshwater organisms by impairing ionoregulation and/or respiratory gas exchange, and by inducing oxidative stress. However, little is known regarding how nickel toxicity is influenced by salinity. In the current study we investigated the salinity-dependence and mechanisms of sub-lethal Ni toxicity in a euryhaline crab (Carcinus maenas). Crabs were acclimated to three experimental salinities - 20, 60 and 100% seawater (SW) and exposed to 3 mg/I, Ni for 24 h or 96 h. Tissues were dissected for analysis of Ni accumulation, gills were taken for oxidative stress analysis (catalase activity and protein carbonyl content), haemolymph ions were analysed for ionoregulatory disturbance, and oxygen consumption was determined in exercised crabs after 96 h of Ni exposure. Total Ni accumulation was strongly dependant on salinity, with crabs from 20% SW displaying the highest tissue Ni burdens after both 24 and 96-h exposures. After 96 h of exposure, the highest accumulation of Ni occurred in the posterior (ionoregulatory) gills at the lowest salinity, 20% SW. Posterior gill 8 exhibited elevated protein carbonyl levels and decreased catalase activity after Ni exposure, but only in 20% SW. Similarly, decreased levels of haemolymph Mg and K and an increased level of Ca were recorded but only in crabs exposed to Ni for 96 h in 20% SW. Oxygen consumption after exercise was also inhibited in crabs exposed to Ni in 20% SW. These data show for the first time the simultaneous presence of all three modes of sub-lethal Ni toxicity in exposed animals, and indicate a strong salinity dependence of sub-lethal Ni toxicity to the euryhaline crab, C. maenas, a pattern that corresponded to tissue Ni accumulation. (C) 2015 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available