4.6 Review

Injury and and defective regeneration of the epithelial basement membrane in corneal fibrosis: A paradigm for fibrosis in other organs?

Journal

MATRIX BIOLOGY
Volume 64, Issue -, Pages 17-26

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.matbio.2017.06.003

Keywords

Basement membrane; Fibrosis; Cornea; Lung; Kidney; Liver; Skin

Funding

  1. US Public Health Service [RO1EY10056]
  2. National Eye Institute, National Institutes of Health, Bethesda, MD [EY015638]
  3. Research to Prevent Blindness, New York, NY

Ask authors/readers for more resources

Myofibroblast-mediated fibrosis is important in the pathophysiology of diseases in most organs. The cornea, the transparent anterior wall of the eye that functions to focus light on the retina, is commonly affected by fibrosis and provides an optimal model due to its simplicity and accessibility. Severe injuries to the cornea, including infection, surgery, and trauma, may trigger the development of myofibroblasts and fibrosis in the normally transparent connective tissue stroma. Ultrastructural studies have demonstrated that defective epithelial basement membrane (EBM) regeneration after injury underlies the development of myofibroblasts from both bone marrow- and keratocyte-derived precursor cells in the cornea. Defective EBM permits epithelium-derived transforming growth factor beta, platelet-derived growth factor, and likely other modulators, to penetrate the stroma at sustained levels necessary to drive the development of vimentin + alpha-smooth muscle actin+ desmin+ (V+A+D+) mature myofibroblasts and promote their persistence. Defective versus normal EBM regeneration likely relates to the severity of the stromal injury and a resulting decrease in fibroblasts (keratocytes) and their contribution of EBM components, including laminin alpha-3 and nidogen-2. Corneal fibrosis may resolve over a period of months to years if the inciting injury is eliminated through keratocyte-facilitated regeneration of normal EBM, ensuing apoptosis of myofibroblasts, and reorganization of disordered extracellular matrix by repopulating keratocytes. We hypothesize the corneal model of fibrosis associated with defective BM regeneration and myofibroblast development after epithelial or parenchymal injury may be a paradigm for the development of fibrosis in other organs where chronic injury or defective BM underlies the pathophysiology of disease. (C) 2017 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available