4.3 Article

Do Additional Features Help or Hurt Category Learning? The Curse of Dimensionality in Human Learners

Journal

COGNITIVE SCIENCE
Volume 43, Issue 3, Pages -

Publisher

WILEY
DOI: 10.1111/cogs.12724

Keywords

Category learning; Supervised learning; Curse of dimensionality

Funding

  1. Australian Research Council [DP110104949, DP150103280, DE12010378]

Ask authors/readers for more resources

The curse of dimensionality, which has been widely studied in statistics and machine learning, occurs when additional features cause the size of the feature space to grow so quickly that learning classification rules becomes increasingly difficult. How do people overcome the curse of dimensionality when acquiring real-world categories that have many different features? Here we investigate the possibility that the structure of categories can help. We show that when categories follow a family resemblance structure, people are unaffected by the presence of additional features in learning. However, when categories are based on a single feature, they fall prey to the curse, and having additional irrelevant features hurts performance. We compare and contrast these results to three different computational models to show that a model with limited computational capacity best captures human performance across almost all of the conditions in both experiments.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available