4.8 Article

Shape-control of one-dimensional PtNi nanostructures as efficient electrocatalysts for alcohol electrooxidation

Journal

NANOSCALE
Volume 11, Issue 11, Pages 4831-4836

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c8nr09892a

Keywords

-

Funding

  1. National Natural Science Foundation of China [51873136, 21503092]
  2. Natural Science Foundation of Zhejiang Province [LY19B030005]
  3. National Natural Science Foundation of Jiangsu Province [BK20181428]
  4. Suzhou Industry [SYG201636]
  5. Project of Scientific and Technologic Infrastructure of Suzhou [SZS201708]
  6. Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)

Ask authors/readers for more resources

Bimetallic one-dimensional (1D) nanostructures such as nanowires (NWs) and nanorods (NRs), serving as high-efficiency anode electrocatalysts, have attracted extensive attention in the past decade. However, the precise design and synthesis of 1D Pt-based nanocrystals with tunable morphology and size still remain an arduous challenge. Driven by this, we report a facile yet efficient strategy for the first time to prepare PtNi ultrafine NWs (UNWs), sinuous NWs (SNWs) and ultrashort NRs (UNRs) by adjusting the amount of citric acid, ascorbic acid and glucose. Detailed analysis of their electrocatalytic properties has indicated that the as-obtained PtNi SNWs exhibit the most outstanding electrocatalytic activity toward ethylene glycol oxidation reaction (EGOR) and glycerol oxidation (GOR), 4.5 and 4.3 times higher in mass activity as well as 4.3 and 3.9 times higher in specific activity compared with the commercial Pt/C catalyst. The as-prepared PtNi SNWs are also more stable than the commercial Pt/C catalyst after successive durability tests. The proposed method provides insight into more rational designs of bimetallic nanocatalysts with 1D architectures and the as-synthesized PtNi catalysts with improved electrocatalytic performance assist in promoting the further development of direct alcohol fuel cells (DAFCs).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available