4.3 Article

Constructing multi-component organic/inorganic composite bacterial cellulose-gelatin/hydroxyapatite double-network scaffold platform for stem cell-mediated bone tissue engineering

Publisher

ELSEVIER
DOI: 10.1016/j.msec.2017.04.062

Keywords

Bacterial cellulose; Double-network; Mechanical strength; In vitro cell culture

Funding

  1. National Natural Science Foundation of China [31071265, 30900297]
  2. National Basic Research Program of China (973 Program) [2012CB725300]

Ask authors/readers for more resources

Bacterial cellulose/hydroxyapatite (BC/HAp) composite had good bioaffinity but its poor mechanical strength limited its widespread applications in bone tissue engineering (BTE). Bacterial cellulose/gelatin (BC/GEL) double-network (DN) composite had excellent mechanical properties but was seldom used in biomedical fields. In this regard, a multi-component organic/inorganic composite BC-GEL/HAp DN composite was synthesized, which combined the advantages of BC/HAp and BC/GEL. Compared with BC/GEL, the BC-GEL/HAp exhibited rougher surface topography and higher thermal stability. Compression and tensile testing indicated that the mechanical strength of the BC-GEL/HAp was greatly reinforced compared with BC/HAp and was even higher than that of BC/GEL. In vitro cell culture demonstrated that the rat bone marrow-derived mesenchymal stem cells (rBMSCs) cultured on the BC-GEL/HAp showed better adhesion and higher proliferation and differentiation potential than the cells cultured on BC/GEL. We hope the BC-GEL/HAp composite could be used as ideal bone scaffold platform or biomedical membrane in the future. (C) 2017 Published by Elsevier B.V.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available