4.6 Article

Electro-Catalytic Behavior of Mg-Doped ZnO Nano-Flakes for Oxidation of Anti-Inflammatory Drug

Journal

JOURNAL OF THE ELECTROCHEMICAL SOCIETY
Volume 166, Issue 9, Pages B3072-B3078

Publisher

ELECTROCHEMICAL SOC INC
DOI: 10.1149/2.0131909jes

Keywords

-

Ask authors/readers for more resources

A novel electrochemical carbon paste sensor containing 10% magnesium doped with zinc oxide nanoparticles was developed and used for electrochemical detection of an anti-inflammatory drug, mefenamic acid. The electrode materials were characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray powder diffraction. Electrochemical and square wave voltammetric techniques were employed to find the lowest possible limit of detection to quantify mefenamic acid. Analytical experiments were performed over the pH range of 3.0-11.2. The pH 7.0 was found to be suitable for the analysis in real samples of human urine as well as a pharmaceutical dosage form. The present work was compared with our early findings based on barium zinc oxide modified glassy carbon electrode to understand the effect of variation of dopant. The results suggested that the dopant significantly affected the electrochemical determination of the analyte and better results were obtained with the modified electrode. (C) The Author(s) 2019. Published by ECS.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available