4.3 Article

Luminomagnetic Eu3+ - and Dy3+-doped hydroxyapatite for multimodal imaging

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.msec.2017.08.032

Keywords

Hydroxyapatite; Europium; Luminescence; MRI; Contrast agent

Funding

  1. DFG [INST 1757/18-1 FUGG]
  2. Ernst Abbe Foundation Jena

Ask authors/readers for more resources

Multimodal imaging has recently attracted much attention due to the advantageous combination of different imaging modalities, like photoluminescence (PL) and magnetic resonance imaging (MRI). In the present study, luminescent and magnetic hydroxyapatites (HAp) were prepared via doping with europium (Eu3+)and dysprosium (Dy3+), respectively. Co-doping of Eu3+ and Dy3+ was used to combine the desired physical properties. Both lanthanide ions were successfully incorporated in the HAp crystal lattice, where they preferentially occupied calcium(I) sites. While Eu-doped HAp (Eu:HAp) exhibits dopant concentration dependent persistent PL properties, Dy-doped HAp (Dy:HAp) shows paramagnetic behavior due to the high magnetic moment of Dy3+. Co-doped HAp (Eu:Dy:HAp) nanoparticles combine both properties in one single crystal. Remarkably, multi modal co-doped HAp features enhanced PL properties due to an energy transfer from Dy3+ sensitizer to Eu3+ activator ions. Eu:Dy:HAp exhibits strong transverse relaxation effects with a maximum transverse relaxivity of 83.3 L/(mmol.s). Due to their tunable PL, magnetic properties and cytocompatibility Eu:-, Dy:- and Eu:Dy:HAp represent promising biocompatible ceramic materials for luminescence imaging that simultaneously may serve as a contrast agent for MRI in permanent implants or functional coatings.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available