4.3 Article

TiO2 nanorod arrays modified Ti substrates promote the adhesion, proliferation and osteogenic differentiation of human periodontal ligament stem cells

Publisher

ELSEVIER
DOI: 10.1016/j.msec.2017.03.148

Keywords

Surface modification; Nanotopography; TiO2 nanorod arrays; Periodontal ligament stem cells; Differentiation

Funding

  1. National Natural Science Foundation of China [81670993, 81371157]
  2. Science and Technology Program of Shandong Province [2014GSF118075]
  3. Construction Engineering Special Fund of Taishan Scholars [ts201511106, tsqn20161068]

Ask authors/readers for more resources

Nanostructure coating on titanium (Ti) implants is well known as a cue for directing osteoblast behavior and function. However, effects of nanostructure coatings on dental stem cells have been rarely explored. In this work, assembled TiO2 nanorod arrays (TNRs) were fabricated on the polished Ti substrates using hydrothermal and sintering methods. The adhesion, morphology, proliferation and osteogenic differentiation of human periodontal ligament stem cells (PDLSCs) seeded onto TNRs substrates were evaluated. Ti substrates were used as control. Rougher TNRs showed better hydrophilicity and protein adsorption capacity compared with Ti control. When seeded on TNRs substrates, PDLSCs exhibited more stretched morphology and higher proliferation rate. Cytoskeletal F-actin expression was markedly promoted for PDLSCs cultured on TNRs substrates under osteogenic induction. Alkaline phosphatase (ALP) activity and mineral deposition were also enhanced by TNRs. Moreover, osteogenesis-related markers of ALP, runt related transcription factor 2 (Runx2) and osteopontin (OPN) of PDLSCs cultured on TNRs substrates were significantly up-regulated at both gene and protein levels when compared to Ti substrates. In conclusion, the unique structure of TNRs provided a biocompatible platform for modulating morphology and function of PDLSCs. The promotion of osteogenic differentiation indicated that the surface modification of implants with TNRs may improve the osteogenic activity of implants and the bone-implant integration in future clinical applications. (C) 2017 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available