4.3 Article

Preparation and characterization of photocured poly (ε-caprolactone) diacrylate/poly (ethylene glycol) diacrylate/chitosan for photopolymerization-type 3D printing tissue engineering scaffold application

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.msec.2017.07.025

Keywords

chitosan; Poly (epsilon-caprolactone); Tissue engineering scaffold; 3D printing; Photocurable

Funding

  1. National Science Council of Taiwan [NSC 101-2221-E-011-025]

Ask authors/readers for more resources

Because of its biocompatible, biodegradable and antimicrobial properties, chitosan is an attractive biomaterial for use in tissue engineering scaffolds. This work builds on previous research by incorporating 95% DD chitosan into a visible-light curable resin which is compatible with a digital light processing (DLPTM) projection additive manufacturing (3D printing) system. Different concentrations of chitosan were added to a poly (ecaprolactone)-diacrylate/poly (ethylene glycol)-diacrylate baseline resin and the samples were extensively characterized. Thermal and mechanical analysis conformed to established scaffold requirements. L929 cells were cultured on the photo-crosslinked films and MTT assays were performed at 1, 3, and 5 days to assess cytocompatibility of the resins. Data and SEM images verified a correlation between the concentration of chitosan in the photocurable resin and the adhesion, proliferation, and viability of cell cultures. Finally, the processability of the resins with the dynamic masking DLP system was demonstrated by constructing multi-layer scaffolds with actual measurements that were consistent with the CAD models. These findings encourage the use of chitosan as an additive in visible-light curable resins to improve desired properties in tissue engineering scaffolds. (C) 2017 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available