4.6 Article

A Low Profile, Dual-band, Dual Polarized Antenna for Indoor/Outdoor Wearable Application

Journal

IEEE ACCESS
Volume 7, Issue -, Pages 33277-33288

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/ACCESS.2019.2894330

Keywords

Wearable antennas; dual-band antennas; dual-polarized antennas; circularly polarized antennas; artificial magnetic conductor (AMC) plane

Ask authors/readers for more resources

A planar, low-profile, dual-band and dual-polarized antenna on a semi-flex substrate is proposed in this paper. The antenna is fabricated on Rogers substrate with a thickness of 3.04 mm and sized at 70.4 x 76.14 x 3.11 mm(3) (0.37 lambda(0) x 0.40 lambda(0) x 0.016 lambda(0)) only. The circular polarization property is enabled in the global navigation satellite system (GNSS) L1/E1 (lower) band by introducing a complementary split ring resonator on the antenna patch. Meanwhile, the antenna operates in the second (upper) 2.45 GHz WLAN band is enabled by etching a U-shaped slot on its ground plane. This simultaneous, dual-band and dual-polarized operation enables the proposed antenna to be applied in the indoor/outdoor wearable application. To isolate the antenna against the influence of the human body, a multiband artificial magnetic conductor (AMC) plane is added on the reverse side of the dual-band radiator. Comparison of the antenna without AMC in free space and when evaluated on the chest of a human body backed by AMC showed improved gain; from 3-5.1 dBi in the lower band, and from 1.53-5.03 dBi in the upper band. Besides that, the front-to-back ratio of the AMC backed monopole antenna also improved from 11-21.88 dB and from 2.5-24.5 dB in the GNSS and WLAN bands, respectively. Next, the specific absorption rate (SAR) of the monopole antenna with and without theAMCplane is assessed. Evaluation results indicate that the maximum SAR value decreased by up to 89.45% in comparison with the antenna without AMC in the lower band. This indicates the effectiveness of the AMC array in increasing gain and FBR, besides reducing EM absorption in the human body.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available