4.6 Article

Slow-photon enhancement of dye sensitized TiO2 photocatalysis

Journal

MATERIALS LETTERS
Volume 197, Issue -, Pages 123-126

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.matlet.2017.03.128

Keywords

Titanium dioxide; Photonic crystals; Photocatalysis Slow photons; Raman scattering; Dye sensitization

Ask authors/readers for more resources

Photonic band gap engineered TiO2 inverse opals were fabricated using self-assembled polystyrene films as sacrificial templates with controlled optical properties, aimed at the identification of the slow-photon effect on dye sensitized TiO2 photocatalysis. The materials' photocatalytic efficiency was evaluated using Raman spectroscopy, on methylene blue photodegradation following both UVA and monochromatic visible light illumination. Contrary to UVA, where no photonic effect could be traced, laser irradiation within the slow-photon energy range of the TiO2 inverse opals, resulted in a marked increase of the dye photosensitized degradation rate, outperforming not only compact nanocrystalline films but also the benchmark mesoporous Aeroxide (R) P25 TiO2 films. This effect provides direct evidence for the presence of slow photons that amplify the interaction of visible light with the adsorbed dye molecules on the periodically structured TiO2 film. (C) 2017 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available