4.8 Article

Doping-induced enhancement of crystallinity in polymeric carbon nitride nanosheets to improve their visible-light photocatalytic activity

Journal

NANOSCALE
Volume 11, Issue 14, Pages 6876-6885

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c9nr00229d

Keywords

-

Funding

  1. National Natural Science Foundation of China [51772085, U1830138]

Ask authors/readers for more resources

Structural defects can greatly inhibit electron transfer in two-dimensional (2D) layered polymeric carbon nitride (CN) unit, seriously lowering its utilization ratio of photogenerated charges during photocatalysis. Herein, we propose a new strategy based on intra-melon hydrogen bonding interactions in 2D CN frameworks to improve the crystallinity of CN. This concept was validated by removing some amino groups and connecting melon using codoped B and F atoms via a simple one-step sodium fluoroborate-assisted thermal treatment. The enhancement in crystallinity effectively promoted exciton dissociation and charge transfer in the CN nanosheets. Furthermore, the B/F dopants also improved the separation of photogenerated carriers by promoting charge capture. The highly efficient visible-light photocatalytic activity of the crystalline B/F-codoped CN nanosheets was demonstrated by degrading methyl orange, Rhodamine B, colorless phenol and tetracycline hydrochloride as models, where their degradation rate constant was more than 10, 5, 32 and 3 times higher than that of pure CN, respectively. Moreover, the B/F-codoped CN exhibited an excellent photoelectrocatalytic performance for the oxygen evolution reaction (OER), outperforming the precious-metal IrO2 catalyst. The simple and effective strategy proposed herein provides a direct route to engineer high crystallinity in 2D materials for tunable charge carrier separation and migration for electronic and optoelectronic applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available