4.6 Article

Excellent performance for water purification achieved by activated porous boron nitride nanosheets

Journal

MATERIALS CHEMISTRY AND PHYSICS
Volume 196, Issue -, Pages 186-193

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.matchemphys.2017.02.049

Keywords

Boron nitride nanosheets; Oxygen-doping; Chemical activation; Water purification; Adsorption energy

Funding

  1. National Natural Science Foundation of China [21103224, 51372066, 51172060, 11404104]
  2. Natural Science Foundation of Hubei Province [2014CFC1127]

Ask authors/readers for more resources

Adsorption represents an efficient and economical approach for water purification. Strong efforts have been made to try new adsorption materials. In this study, activated oxygen-rich porous boron nitride nanosheets (OBNNSs) containing abundant B-O bonds and boron atom vacancies were facilely synthesized via simple two-step method. Different from the conventional doping and activation methods, the oxygen dopants and boron atom vacancies in OBNNSs mainly originate from the starting materials and are introduced in situ and chemical activation during the product formation. OBNNSs exhibit high adsorption capacity and adsorption rate for metallic ions due to its unique polarity of B-O bonds and boron atom vacancies, surpassing the bulk and activated BN as well as many common adsorbents. Their critical role in the strong adsorption ability of OBNNSs was validated by theoretical calculations. Additionally, the two-dimensional nanostructure of OBNNSs makes most of the B-O bonds and boron atom vacancies expose on the surface ((002) plane) and further enhances the adsorption performance. Moreover, the used OBNNSs can be readily regenerated by acidic elution due to the super anti-oxidation, corrosion resistance, and structural stability. Bearing both a high removal efficiency for water pollutants, especially different toxic metallic irons (Pb2+, Cr3+, and Hg2+), and excellent reusability, OBNNSs are very promising nanomaterials for water purification. (C) 2017 Published by Elsevier B.V.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available