4.7 Article

Interlayer exciton dynamics in van der Waals heterostructures

Journal

COMMUNICATIONS PHYSICS
Volume 2, Issue -, Pages -

Publisher

NATURE RESEARCH
DOI: 10.1038/s42005-019-0122-z

Keywords

-

Funding

  1. European Union [696656]
  2. Swedish Research Council (VR)
  3. Stiftelsen Olle Engkvist
  4. Deutsche Forschungsgemeinschaft (DFG) [SFB 951]
  5. School of Nanophotonics [SFB 787]

Ask authors/readers for more resources

Atomically thin transition metal dichalcogenides can be stacked to van der Waals heterostructures enabling the design of new materials with tailored properties. The strong Coulomb interaction gives rise to interlayer excitons, where electrons and holes are spatially separated in different layers. In this work, we reveal the time- and momentum-dependent elementary processes behind the formation, thermalization and photoemission of interlayer excitons for the exemplary MoSe2-WSe2 heterostructure. We identify tunneling of holes from MoSe2 to WSe2 on a ps timescale as the crucial process for interlayer exciton formation. We also predict a drastic reduction of the formation time as a function of the interlayer energy offset suggesting that interlayer excitons can be externally tuned. Finally, we explain the experimental observation of a dominant photoluminescence from interlayer excitons despite the vanishingly small oscillator strength as a consequence of huge interlayer exciton occupations at low temperatures.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available