4.6 Article

Evaluation of the Performance of 18F-Fluorothymidine Positron Emission Tomography/Computed Tomography (18F-FLT-PET/CT) in Metastatic Brain Lesions

Journal

DIAGNOSTICS
Volume 9, Issue 1, Pages -

Publisher

MDPI
DOI: 10.3390/diagnostics9010017

Keywords

18F-fluorothymidine positron emission tomography; computed tomography; brain metastases; FLT; PET; CT

Ask authors/readers for more resources

18F-fluorothymidine (18F-FLT) is a radiolabeled thymidine analog that has been reported to help monitor tumor proliferation and has been studied in primary brain tumors; however, knowledge about 18F-FLT positron emission tomography/computed tomography (PET/CT) in metastatic brain lesions is limited. The purpose of this study is to evaluate the performance of 18F-FLT-PET/CT in metastatic brain lesions. A total of 20 PET/CT examinations (33 lesions) were included in the study. Semiquantitative analysis was performed: standard uptake value (SUV) with the utilization of SUVmax, tumor-to-background ratio (T/B), SUVpeak, SUV1cm(3), SUV0.5cm(3), SUV50%, SUV75%, PV50% (volume x SUV50%), and PV75% (volume x SUV75%) were calculated. Sensitivity, specificity, and accuracy for each parameter were calculated. Optimal cutoff values for each parameter were obtained. Using a receiver operating characteristic (ROC) curve analysis, the optimal cutoff values of SUVmax, T/B, and SUVpeak for discriminating active from non-active lesions were found to be 0.615, 4.21, and 0.425, respectively. In an ROC curve analysis, the area under the curve (AUC) is higher for SUVmax (p-value 0.017) compared to the rest of the parameters, while using optimal cutoff T/B shows the highest sensitivity and accuracy. PVs (proliferation x volumes) did not show any significance in discriminating positive from negative lesions. 18F-FLT-PET/CT can detect active metastatic brain lesions and may be used as a complementary tool. Further investigation should be performed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available