4.6 Article

Nematic superconductivity stabilized by density wave fluctuations: Possible application to twisted bilayer graphene

Journal

PHYSICAL REVIEW B
Volume 99, Issue 14, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.99.144507

Keywords

-

Ask authors/readers for more resources

Nematic superconductors possess unconventional superconducting order parameters that spontaneously break rotational symmetry of the underlying crystal. In this work we propose a mechanism for nematic superconductivity stabilized by strong density wave fluctuations in two dimensions. While the weak-coupling theory finds the fully gapped chiral state to be energetically stable, we show that strong density wave fluctuations result in an additional contribution to the free energy of a superconductor with multicomponent order parameters, which generally favors nematic superconductivity. Our theory sheds light on the recent observation of rotational symmetry breaking in the superconducting state of twisted bilayer graphene.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available