4.7 Article

Self-Limiting Growth of High-Quality 2D Monolayer MoS2 by Direct Sulfurization Using Precursor-Soluble Substrates for Advanced Field-Effect Transistors and Photodetectors

Journal

ACS APPLIED NANO MATERIALS
Volume 2, Issue 1, Pages 369-378

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsanm.8b01955

Keywords

monolayer MoS2; direct sulfurization; glass; 2D materials; transition metal dichalcogenides

Ask authors/readers for more resources

Monolayer transition metal dichalcogenides (TMDs) have demonstrated great potential in next-generation electronics due to their unique optical and electronic properties. However, it remains challenging to produce uniform high-quality TMDs over a large scale. The direct sulfurization method holds great promise in achieving large-scale synthesis, but the obtained materials suffer from small grain size and multilayer regions. Herein, low-cost glass substrate is used to achieve facile growth of large-area uniform and large-size monolayer MoS2 crystals via a modified direct sulfurization method. We find that the ability of glass to incorporate predeposited precursors into its molten state is the key to the production of high-quality monolayer MoS2 crystals. The monolayer MoS2 crystals possess the largest average crystal size (similar to 100 mu m) for MoS2 grown by the direct sulfurization method, with large-area uniformity, which is only limited by the size of the substrate. A combination of low-cost, uniformity, scalability, simplicity, and high quality is achieved in our method which showed great promise for the development of wafer scale electronic devices based on 2D materials. Our work also provides a new look at the role substrates could play in the synthesis and the possibilities of using other glass or liquid substrates for the growth of high-quality 2D materials.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available