4.5 Article

Effect of presoak-accelerated carbonation factors on enhancing recycled aggregate mortars

Journal

MAGAZINE OF CONCRETE RESEARCH
Volume 69, Issue 16, Pages 838-849

Publisher

ICE PUBLISHING
DOI: 10.1680/jmacr.16.00468

Keywords

aggregates; carbonation; mortar

Ask authors/readers for more resources

As the low content of calcium-bearing components in demolished recycled fine aggregates (RFA) significantly limits the carbon dioxide (CO2) curing efficiency, the effects of pre-soaking demolished RFA with calcium source solutions before the curing process are presented in this paper. Effects of varied types of calcium source solutions, including calcium hydroxide (CH), calcium chloride (CL) and calcium nitrate (CN) on the curing process are investigated. In addition, the influence of the other two parameters pertaining to curing conditions, namely, the carbon dioxide pressure and curing temperature, on the curing process are also studied. The experimental results show that, after the pre-soaking and curing process, the values of powder content, water absorption and crush value are all decreased for RFA. Furthermore, the compressive strength of mortars at 28 d are increased by as much as 56%. In addition, CN pre-soaking allows the RFA to achieve the lowest water absorption, and CL pre-soaking enables the mortars to obtain the highest compressive strength at 28 d; increasing gas pressure brings about a minor improvement in the properties of RFA and mortars, and curing temperature has complex effects on the carbonation reactions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available