4.7 Article

Ethanol-Processable, Highly Crystalline Conjugated Polymers for Eco-Friendly Fabrication of Organic Transistors and Solar Cells

Journal

MACROMOLECULES
Volume 50, Issue 11, Pages 4415-4424

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.macromol.7b00452

Keywords

-

Funding

  1. National Research Foundation (NRF) of Korea [2016M1A2A2940911, 2015M1A2A2057509, 2012M3A6A7055540, 20100020209]
  2. National Research Foundation of Korea [2015M1A2A2057509] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

Ask authors/readers for more resources

We report eco- and human-friendly fabrication of organic field-effect transistors (OFETs) and polymer solar cells (PSCs) using only ethanol as a processing solvent at ambient condition, in stark contrast to that involving the use of halogenated and/or aromatic solvents. New ethanol-processable electroactive materials, p-type polymer (PPDT2FBT-A) and n-type bis-adduct fullerene acceptor (Bis-C-60-A) are designed rationally by incorporation of oligoethylene glycol (OEG) side-chains. By ethanol processing, PPDT2FBT-A shows a broad light absorption in the range of 300-700 nm and highly crystalline interchain ordering with out-of-plane interlamellar scattering up to (400) with strong pi-pi stacking. As a result, the ethanol-processed PPDT2FBT-A OFETs yield high charge-carrier mobilities up to 1.0 x 10(-2) cm(2) s(-1), which is the highest value reported to date from alcohol-processed devices. Importantly, the ethanol-processed PPDT2FBT-A OFET outperformed that processed using typical processing solvent, chlorobenzene (CB), with similar to 10-fold enhancement in hole mobility, because the highly edge-on oriented packing of PPDT2FBT-A was produced by ethanol-process. Also, for the first time, significant photovoltaic performance was achieved for the ethanol-processed device of PPDT2FBT-A and Bis-C-60-A due to the formation of an interpenetrating nanofibrillar morphology of highly crystalline PPDT2FBT-A polymers. The relationships between molecular structure, nanoscale morphology and electronic properties within ethanol-processed OFETs and PSCs were elucidated by comparing to typical CB-processed devices. These comparisons provide important guidelines for the design of new ethanol/water-soluble active layer materials and their use in the development of green solvent-processed efficient OFETs and PSCs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available