4.4 Article

Experimental evaluation on the effect of electrostatic minimum quantity lubrication (EMQL) in end milling of stainless steels

Journal

MACHINING SCIENCE AND TECHNOLOGY
Volume 22, Issue 2, Pages 271-286

Publisher

TAYLOR & FRANCIS INC
DOI: 10.1080/10910344.2017.1337135

Keywords

Electrostatic minimum quantity lubrication; end milling; machining performance; near-dry machining; stainless steels

Ask authors/readers for more resources

The machining of stainless steels is very challenging owing to their high toughness and low thermal conductivity, causing high cutting temperatures and rapid tool wear. Conventionally, metalworking fluids in flood form are used during the process to improve surface quality and tool life; however, their use raises issues including environmental pollution and economic concerns. Therefore, an electrostatic minimal quantity lubrication (EMQL) technology was developed to reduce the consumption of metalworking fluids. EMQL is a near-dry machining technology utilizing the synergetic effects between electrostatic spraying and minimum quantity lubrication (MQL), wherein the lubricant is to apply in a form of fine, uniform and highly penetrable and wettable mist droplets directly to the cutting zone. This study investigates the effect of EMQL in end milling of AISI 304 stainless steel in comparison with dry, wet and MQL machining. The results suggest that EMQL reduces tool wear and cutting force, prolongs tool life considerably and enhances surface finish compared with conventional wet and MQL machining. scanning electron microscopy and Energy-dispersive X-ray spectroscopy analyses show that EMQL considerably reduces adhesive and abrasive wear on the flank face because of the lower friction and heat generation resulting from more efficient entry of the lubricant into the cutting interfaces.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available