4.6 Article

Models of steam-assisted gravity drainage (SAGD) steam chamber expanding velocity in double horizontal wells and its application

Journal

PETROLEUM EXPLORATION AND DEVELOPMENT
Volume 46, Issue 2, Pages 347-354

Publisher

KEAI PUBLISHING LTD
DOI: 10.1016/S1876-3804(19)60014-5

Keywords

steam-assisted gravity drainage; observation well temperature; steam chamber; steam chamber expanding velocity; oil drainage zone

Funding

  1. China National Science and Technology Major Project [2016ZX05012-002]

Ask authors/readers for more resources

The development of steam chamber can be used to evaluate steam-assisted gravity drainage (SAGD) performance. The velocity of steam chamber expanding is the key parameter for evaluating the development of steam chamber. Based on SAGD technology theory and heat transfer theory, two calculation model methods, observation well temperature method and steam chamber edge method for estimating the horizontal expanding velocity of steam chamber, were presented. Through analyzing the monitoring data and numerical simulation results of a typical super heavy oil block developed by SAGD in Fengcheng oilfield in Xinjiang, NW China, the development patterns of steam chamber and temperature variation law in the observation well at different stages are determined. The observed temperature data was used to calculate steam chamber expanding velocity. The calculated chamber velocity at different time was applied to predict the temperature distribution of oil drainage zone at the edge of steam chamber and SAGD oil rate. The results indicate that temperature function of high temperature zone in the observation well temperature curve has a linear relationship with measuring depth. The characteristic section can be used to calculate key parameters such as the angle of the drainage interface, expanding edge and velocity of steam chamber. The field production data verify that the results of the two proposed methods of steam chamber growth are reliable and practical, which can provide theoretical support for the efficient development of SAGD.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available