4.7 Article

Comment on Isochoric, isobaric, and ultrafast conductivities of aluminum, lithium, and carbon in the warm dense matter regime

Journal

PHYSICAL REVIEW E
Volume 99, Issue 4, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.99.047201

Keywords

-

Funding

  1. DFG [SFB 652, FOR 2440]
  2. DOE Office of Science, Fusion Energy Science under FWP [100182]

Ask authors/readers for more resources

Dharma-wardana et al. [M. W. C. Dharma-wardana et al., Phys. Rev. E 96, 053206 (2017)] recently calculated dynamic electrical conductivities for warm dense matter as well as for nonequilibrium two-temperature states termed ultrafast matter (UFM) [M. W. C. Dharma-wardana, Phys. Rev. E 93, 063205 (2016)]. In this Comment we present two evident reasons why these UFM calculations are neither suited to calculate dynamic conductivities nor x-ray Thomson scattering spectra in isochorically heated warm dense aluminum. First, the ion-ion structure factor, a major input into the conductivity and scattering spectra calculations, deviates strongly from that of isochorically heated aluminum. Second, the dynamic conductivity does not show a non-Drude behavior which is an essential prerequisite for a correct description of the absorption behavior in aluminum. Additionally, we clarify misinterpretations by Dharma-wardana et al. concerning the conductivity measurements of Gathers [G. R. Gathers, Int. J. Thermophys. 4, 209 (1983)].

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available