4.6 Article

A novel STAT3 inhibitor, HJC0152, exerts potent antitumor activity in glioblastoma

Journal

AMERICAN JOURNAL OF CANCER RESEARCH
Volume 9, Issue 4, Pages 699-713

Publisher

E-CENTURY PUBLISHING CORP

Keywords

HJC0152; STAT3; anti-tumor activity; glioblastoma; epithelial-mesenchymal transition; senescence; apoptosis

Categories

Funding

  1. National Science Foundation of China [NSFC81572492]
  2. National Clinical Research Center for Cancer
  3. Special Program of Talents Development for Excellent Youth Scholars in Tianjin

Ask authors/readers for more resources

Aberrant expression and activation of signal transducer and activator of transcription 3 (STAT3) is implicated in several malignancies, including glioblastoma, and is correlated with poor outcomes in patients with glioblastoma, rendering STAT3 a potential therapeutic target. However, few STAT3 inhibitors have been approved for clinical use. We recently developed an orally active small-molecule compound with anti-STAT3 activity, HJC0152. This study aimed to test the effect of this novel drug on glioblastoma cell lines, and provide possibility to improve clinic prognosis of patients with glioblastoma in the future. In the present study, we aimed to determine the effects of HJC0152 on the growth, proliferation, and chemosensitivity of glioblastoma cell lines and xenograft tumors. We found that HJC0152 inactivated STAT3 via inhibiting phosphorylation of the Tyr705 residue. In vitro, HJC0152 suppressed the proliferation and motility of glioblastoma cells, induced apoptosis, and enhanced the chemosensitivity of glioblastoma cells. Furthermore, HJC0152 inhibited the growth of glioblastoma xenograft tumors in vivo. This study provides a rationale for developing HJC0152 as a STAT3-targeting therapy for treating human glioblastoma in the future.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available