4.7 Article

ITD mutation in FLT3 tyrosine kinase promotes Warburg effect and renders therapeutic sensitivity to glycolytic inhibition

Journal

LEUKEMIA
Volume 31, Issue 10, Pages 2143-2150

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/leu.2017.45

Keywords

-

Funding

  1. Guangdong Natural Science Foundation [2014A030313037]
  2. National Basic Research Program of China (973 program) [2013CB910304]
  3. Guangzhou Innovation Research Program [LCY201317]
  4. Guangzhou Technology Program [201508020250]

Ask authors/readers for more resources

Internal tandem duplication (ITD) mutation in Fms-like tyrosine kinase 3 gene (FLT3/ITD) represents an unfavorable genetic change in acute myeloid leukemia (AML) and is associated with poor prognosis. Metabolic alterations have been involved in tumor progression and attracted interest as a target for therapeutic intervention. However, few studies analyzed the adaptations of cellular metabolism in the context of FLT3/ITD mutation. Here, we report that FLT3/ITD causes a significant increase in aerobic glycolysis through AKT-mediated upregulation of mitochondrial hexokinase (HK2), and renders the leukemia cells highly dependent on glycolysis and sensitive to pharmacological inhibition of glycolytic activity. Inhibition of glycolysis preferentially causes severe ATP depletion and massive cell death in FLT3/ITD leukemia cells. Glycolytic inhibitors significantly enhances the cytotoxicity induced by FLT3 tyrosine kinase inhibitor sorafenib. Importantly, such combination provides substantial therapeutic benefit in a murine model bearing FLT3/ITD leukemia. Our study suggests that FLT3/ITD mutation promotes Warburg effect, and such metabolic alteration can be exploited to develop effective therapeutic strategy for treatment of AML with FLT3/ITD mutation via metabolic intervention.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available