4.6 Article

Assessing the performance of MM/PBSA and MM/GBSA methods. 9. Prediction reliability of binding affinities and binding poses for protein-peptide complexes

Journal

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Volume 21, Issue 19, Pages 10135-10145

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c9cp01674k

Keywords

-

Funding

  1. National Key R&D Program of China [2016YFA0501701, 2016YFB0201700]
  2. National Science Foundation of China [21575128, 81773632]

Ask authors/readers for more resources

A significant number of protein-protein interactions (PPIs) are mediated through the interactions between proteins and peptide segments, and therefore determination of protein-peptide interactions (PpIs) is critical to gain an in-depth understanding of the PPI network and even design peptides or small molecules capable of modulating PPIs. Computational approaches, especially molecular docking, provide an efficient way to model PpIs, and a reliable scoring function that can recognize the correct binding conformations for protein-peptide complexes is one of the most important components in protein-peptide docking. The end-point binding free energy calculation methods, such as MM/GBSA and MM/PBSA, are theoretically more rigorous than most empirical and semi-empirical scoring functions designed for protein-peptide docking, but their performance in predicting binding affinities and binding poses for protein-peptide systems has not been systematically assessed. In this study, we first evaluated the capability of MM/GBSA and MM/PBSA with different solvation models, interior dielectric constants (epsilon(in)) and force fields to predict the binding affinities for 53 protein-peptide complexes. For the 19 short peptides with 5-12 residues, MM/PBSA based on the minimized structures in explicit solvent with the ff99 force field and epsilon(in) = 2 yields the best correlation between the predicted binding affinities and the experimental data (r(p) = 0.748), while for the 34 medium-size peptides with 20-25 residues, MM/GBSA based on 1 ns of molecular dynamics (MD) simulations in implicit solvent with the ff03 force field, the GB(OBC1) model and a low interior dielectric constant (epsilon(in) = 1) yields the best accuracy (r(p) = 0.735). Then, we assessed the rescoring capability of MM/PBSA and MM/GBSA to distinguish the correct binding conformations from the decoys for 112 protein-peptide systems. The results illustrate that MM/PBSA based on the minimized structures with the ff99 or ff14SB force field and MM/GBSA based on the minimized structures with the ff03 force field show excellent capability to recognize the near-native binding poses for the short and medium-size peptides, respectively, and they outperform the predictions given by two popular protein-peptide docking algorithms (pepATTRACT and HPEPDOCK). Therefore, MM/PBSA and MM/GBSA are powerful tools to predict the binding affinities and identify the correct binding poses for protein-peptide systems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available