4.7 Article

A Deep Learning Approach to Galaxy Cluster X-Ray Masses

Journal

ASTROPHYSICAL JOURNAL
Volume 876, Issue 1, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.3847/1538-4357/ab14eb

Keywords

galaxies: clusters: general; methods: statistical; X-rays: galaxies: clusters

Ask authors/readers for more resources

We present a machine-learning (ML) approach for estimating galaxy cluster masses from Chandra mock images. We utilize a Convolutional Neural Network (CNN), a deep ML tool commonly used in image recognition tasks. The CNN is trained and tested on our sample of 7896 Chandra X-ray mock observations, which are based on 329 massive clusters from the IllustrisTNG simulation. Our CNN learns from a low resolution spatial distribution of photon counts and does not use spectral information. Despite our simplifying assumption to neglect spectral information, the resulting mass values estimated by the CNN exhibit small bias in comparison to the true masses of the simulated clusters (-0.02 dex) and reproduce the cluster masses with low intrinsic scatter, 8% in our best fold and 12% averaging over all. In contrast, a more standard core-excised luminosity method achieves 15%-18% scatter. We interpret the results with an approach inspired by Google DeepDream and find that the CNN ignores the central regions of clusters, which are known to have high scatter with mass.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available