4.6 Article

Implantation of Fe3O4 Nanoparticles in Shells of Au@m-SiO2 Yolk@Shell Nanocatalysts with Both Improved Recyclability and Catalytic Activity

Journal

LANGMUIR
Volume 33, Issue 30, Pages 7486-7493

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.langmuir.7b01742

Keywords

-

Funding

  1. National Natural Science Foundation of China [21673202, 21273004]
  2. Qing Lan Project
  3. Priority Academic Program Development of Jiangsu Higher Education Institutions

Ask authors/readers for more resources

Multifunctional nanocatalysts of Au@Fe3O4/m-SiO2 yolk@shell hybrids had been developed through a template-assisted synthesis, where Fe3O4 nanoparticles (similar to 12 nm) and m-SiO2 shells were sequentially assembled on surfaces of Au/SiO2 core/shell templates, followed by selective etching of the inner SiO2 cores, leading to the formation of Au@Fe3O4/m-SiO2 yolk@shell hybrids. The Fe3O4 nanoparticles were implanted in the inner surfaces of m-SiO2 shells with partially exposed surfaces to the inner cavity. The novel design not only ensures a high surface area (540.0 m(2)/g) and saturation magnetization (48.6 emu/g) of the hybrids but also enables interaction between Au and Fe3O4 nanoparticles. Catalytic tests toward the reduction of 4-nitrophenol in the presence of NaBH4 indicated that Au@Fe3O4/m-SiO2 yolk@shell nanocatalysts not only showed high stability and recydability but also maintained improved catalytic activity as a result of the synergetic effect resulting from Au and Fe3O4 interactions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available