4.7 Article

Accuracy of nonmolecular identification of growth-hormone-transgenic coho salmon after simulated escape

Journal

ECOLOGICAL APPLICATIONS
Volume 25, Issue 6, Pages 1618-1629

Publisher

WILEY
DOI: 10.1890/14-1905.1

Keywords

aquaculture; coho salmon (Oncorhynchus kisutch); ecological risk; genetic modification; invasive species; morphology analysis

Funding

  1. Canadian Regulatory System for Biotechnology
  2. European Community [MOIF-CT-2005-8141]

Ask authors/readers for more resources

Concerns with transgenic animals include the potential ecological risks associated with release or escape to the natural environment, and a critical requirement for assessment of ecological effects is the ability to distinguish transgenic animals from wild type. Here, we explore geometric morphometrics (GeoM) and human expertise to distinguish growth-hormone-transgenic coho salmon (Oncorhynchus kisutch) specimens from wild type. First, we simulated an escape of 3-month-old hatchery-reared wild-type and transgenic fish to an artificial stream, and recaptured them at the time of seaward migration at an age of 13 months. Second, we reared fish in the stream from first-feeding fry until an age of 13 months, thereby simulating fish arising from a successful spawn in the wild of an escaped hatchery-reared transgenic fish. All fish were then assessed from photographs by visual identification (VID) by local staff and by GeoM based on 13 morphological landmarks. A leave-one-out discriminant analysis of GeoM data had on average 86% (72-100% for individual groups) accuracy in assigning the correct genotypes, whereas the human experts were correct, on average, in only 49% of cases (range of 18-100% for individual fish groups). However, serious errors (i.e., classifying transgenic specimens as wild type) occurred for 7% (GeoM) and 67% (VID) of transgenic fish, and all of these incorrect assignments arose with fish reared in the stream from the first-feeding stage. The results show that we presently lack the skills of visually distinguishing transgenic coho salmon from wild type with a high level of accuracy, but that further development of GeoM methods could be useful in identifying second-generation fish from nature as a nonmolecular approach.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available