4.7 Article

Magnetic Janus particles synthesized using droplet micro-magnetofluidic techniques for protein detection

Journal

LAB ON A CHIP
Volume 17, Issue 20, Pages 3514-3525

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c7lc00830a

Keywords

-

Ask authors/readers for more resources

Magnetic droplets on a microfluidic platform can act as micro-robots, providing wireless, remote, and programmable control. This field of droplet micro-magnetofluidics (DMMF) is useful for droplet merging, mixing and synthesis of Janus structures. Specifically, magnetic Janus particles (MJP) are useful for protein and DNA detection as well as magnetically controlled bioprinting. However, synthesis of MJP with control of the functional phases is a challenge. Hence, we developed a high flow rate, surfactant-free, wash-less method to synthesize MJP by integration of DMMF with hybrid magnetic fields. The effects of the flow rate, flow rate ratio, and hybrid magnetic field on the magnetic component of the Janus droplets and the MJP were investigated. It was found that the magnetization, particle size, and phase distribution inside MJP could be readily tuned by the flow rates and the magnetic field. The magnetic component in the MJP could be concentrated after mixing at flow rate ratio values less than 7.5 and flow rates less than 3 ml h(-1). The experimental results and our simulations are in good agreement. The synthesized magnetic-fluorescent Janus particles were used for protein detection, with BSA as a model protein.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available